Bayesian Inference of Triple Seasonal Autoregressive Models

نویسندگان

چکیده

In this paper we extend autoregressive models to fit time series that have three layers of seasonality, i.e. triple seasonal (TSAR) models, and introduce the Bayesian inference for these TSAR models. Assuming model errors are normally distributed employing priors, Jeffreys', g, normal-gamma on parameters, derive marginal posterior distributions parameters. particular, show be multivariate t gamma coefficients precision, respectively. We evaluate efficiency proposed using simulation study, then apply it real-world hourly electricity load datasets in six European countries.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Inference in Autoregressive Models with Non-negative Residuals

Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...

متن کامل

Bayesian Mixtures of Autoregressive Models

In this paper we propose a class of time-domain models for analyzing possibly nonstationary time series. This class of models is formed as a mixture of time series models, whose mixing weights are a function of time. We consider specifically mixtures of autoregressive models with a common but unknown lag. To make the methodology work we show that it is necessary to first partition the data into...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Seasonal Autoregressive Models for Estimating the Probability of Frost in Rafsanjan

This work develops a statistical model to assess the frost risk in Rafsanjan, one of the largest pistachio production regions in the world. These models can be used to estimate the probability that a frost happens in a given time-period during the year; a frost happens after 10 warm days in the growing season. These probability estimates then can be used for: (1) assessing the agroclimate risk ...

متن کامل

Bayesian Analysis of Random Coefficient AutoRegressive Models

Random Coefficient AutoRegressive (RCAR) models are obtained by introducing random coefficients to an AR or more generally ARMA model. These models have second order properties similar to that of ARCH and GARCH models. In this article, a Bayesian approach to estimate the first order RCAR models is considered. A couple of Bayesian testing criteria for the unit-root hypothesis are proposed: one i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pakistan Journal of Statistics and Operation Research

سال: 2022

ISSN: ['1816-2711', '2220-5810']

DOI: https://doi.org/10.18187/pjsor.v18i4.3869